ResearchGate

See discussions, stats, and author profiles for this publication at:

Automatic Text Correction of PDF Extracted Text

Technical Report - December 2016

CITATIONS READS
0 8
1 author:

@ Brigham Young University - Provo Main Campus

4 PUBLICATIONS 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by on 10 May 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/316844094_Automatic_Text_Correction_of_PDF_Extracted_Text?enrichId=rgreq-aa0dbb9424d6d9cb452918c12e9b110e-XXX&enrichSource=Y292ZXJQYWdlOzMxNjg0NDA5NDtBUzo0OTI1MDQzNjU5MTIwNjRAMTQ5NDQzMzU5OTMxMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/316844094_Automatic_Text_Correction_of_PDF_Extracted_Text?enrichId=rgreq-aa0dbb9424d6d9cb452918c12e9b110e-XXX&enrichSource=Y292ZXJQYWdlOzMxNjg0NDA5NDtBUzo0OTI1MDQzNjU5MTIwNjRAMTQ5NDQzMzU5OTMxMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-aa0dbb9424d6d9cb452918c12e9b110e-XXX&enrichSource=Y292ZXJQYWdlOzMxNjg0NDA5NDtBUzo0OTI1MDQzNjU5MTIwNjRAMTQ5NDQzMzU5OTMxMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua_Mathias2?enrichId=rgreq-aa0dbb9424d6d9cb452918c12e9b110e-XXX&enrichSource=Y292ZXJQYWdlOzMxNjg0NDA5NDtBUzo0OTI1MDQzNjU5MTIwNjRAMTQ5NDQzMzU5OTMxMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua_Mathias2?enrichId=rgreq-aa0dbb9424d6d9cb452918c12e9b110e-XXX&enrichSource=Y292ZXJQYWdlOzMxNjg0NDA5NDtBUzo0OTI1MDQzNjU5MTIwNjRAMTQ5NDQzMzU5OTMxMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Brigham_Young_University-Provo_Main_Campus?enrichId=rgreq-aa0dbb9424d6d9cb452918c12e9b110e-XXX&enrichSource=Y292ZXJQYWdlOzMxNjg0NDA5NDtBUzo0OTI1MDQzNjU5MTIwNjRAMTQ5NDQzMzU5OTMxMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua_Mathias2?enrichId=rgreq-aa0dbb9424d6d9cb452918c12e9b110e-XXX&enrichSource=Y292ZXJQYWdlOzMxNjg0NDA5NDtBUzo0OTI1MDQzNjU5MTIwNjRAMTQ5NDQzMzU5OTMxMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua_Mathias2?enrichId=rgreq-aa0dbb9424d6d9cb452918c12e9b110e-XXX&enrichSource=Y292ZXJQYWdlOzMxNjg0NDA5NDtBUzo0OTI1MDQzNjU5MTIwNjRAMTQ5NDQzMzU5OTMxMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

PDF Text Processing

Joshua Mathias

December, 2016

1 Introduction
1.1 Purpose
1.2 Scope

2 Problems
2.1 Introduction
2.2 Problems

3 Previous Work
3.1 Introduction
3.2 Previous Work

4 Methods
4 1 Introduction
4.2 Methods

5 Results
5.1 Introduction
5.2 Combined Words
5.3 Empty Lines and Space
5.4 Unwanted Characters
5.5 Incorrect Casing

6 Conclusions
6.1 Introduction
6.3 Conclusion
6.4 Future Work

7 Appendix

1 Introduction

1.1 Purpose

Table of Contents

o 0o (o> BN >R -) w W w W NDDN

©

13
13
15
16
19

22
22
22
22

23

This document describes methods and research for correcting text extracted from

PDF files. The purpose of this project was to correct text extracted from PDF files
(33285 of which were provided for this project) of The Church of Jesus Christ of
Latter-Day Saints, so that they could use the text for machine learning training

purposes (such as for machine translation). Consequently, the project, or final
formatting of the files, is intended to comply to the LDS Church’s standards and
requests.

1.2 Scope

The problems that need to be solved, proposed solutions, concepts behind the
implemented solutions, and the results will be covered in this document. There will
also be some relatively small examples from files included. The code used for the
project is available at https://github.com/JoshuaMathias/text-correction.

2 Problems

2.1 Introduction

Here we lay out the problems in the text extracted from PDF files that need to be
fixed, as well as problems to solve in order to perform the corrections and evaluate
the solutions.

2.2 Problems

Combined words
Words missing a space between them.

Problem:
otherway

Correct:
other way

Empty lines and space
Blank lines or lines with only whitespace. Also any spacing other than a standard
space or new line.

Problem:
People who know a lot of otherpeople.

Remember that to achieve quicker, better results, you should:

https://github.com/JoshuaMathias/text-correction

Correct:
People who know a lot of other people.
Remember that to achieve quicker, better results, you should:

Combined lines
Where one or more words from a different line or sentence are on the same line and
consequently combined incorrectly with another sentence.

Problem (test_1.txt):
Dictionary heb An alternate translation from the Hebrew gr An alternate
translation from the Greek ie An explanation of idioms and difficult wording

Correct:
Dictionary
heb An alternate translation from the Hebrew
gr An alternate translation from the Greek
ie An explanation of idioms and difficult wording

Split lines
Where one or more words from one line (sentence) are separated and on a different
line.

Problem (test_3.txt):
B
e it known unto all nations

Correct:
Be it known unto all nations

Mixed words
Where one or more words are at the incorrect location in the sentence or line.

Problem (test_1.txt):
Isa. Jer. Isaiah Jeremiah 1 Jn. 2 Jn. 1 John 2 John Pearl of Great Price

Correct:
Isa. Isaiah Jer. Jeremiah 1 Jn. 1 John 2 Jn. 2 John Pearl of Great Price

Misspelled words/missing letters
Misspelled words or words missing letters.

Problem (test_5.txt):
Tst

Correct:
Test

Incorrect casing
For each word, one or more letters in the word are either incorrectly lowercase or
incorrectly upper case.

Problem (test_4.txt):
The TeSTimOny Of eighT WiTneSSeS

Correct:
The Testimony of Eight Witnesses

Split words
A space in between letters of the same word (but on the same line; otherwise
constitutes a split line).

Problem (test_5.txt):
thef ear

Correct:
the fear

Unwanted characters
Unrecognized characters, HTML, URLs, or other technical characters such as OffOff
(from PDF check boxes), O, -

Problem:

[0 Change to existing vendor
OffOffOff

fax the completed form to

Correct:
Change to existing vendor
fax the completed form to .

3 Previous Work

3.1 Introduction

Here we describe previous methods or programs to solve the problems listed above,
as well as if we used these methods as part of a solution or simply used them for
comparison.

3.2 Previous Work

General Text Correction

The following link provides tools for some of the tasks in this project, such as
removing extra whitespace and counting characters, but the interface allows for only
one file at a time, and this project requires custom solutions to adapt to the Church’s
data and requirements.

Combined Words

The following StackOverflow conversations provide some answers:
How can | split multiple joined words?
Contains a possible implementation in Python using the Viterbi algorithm.
We don’t use the Viterbi algorithm in this work, but it may be worth trying and
comparing, at least if greater efficiency is needed.

How to split a string into words.

Identifies this problem as a segmentation problem, with a link to the following
lecture from Duke, describing a possible solution, “maximum probability
segmentation”:
http://www.cs.duke.edu/courses/fall01/cps130/lectures/lect21.pdf

The lecture provides a possible implementation, and it is intuitively similar
(using word probabilities) to what we do in this work, but it may be worth
looking into its differences in implementation and calculating probabilities for
the most likely segmentation.

Empty Lines

StackOverflow solution:
Remove all whitespaces from String but keep ONE newline
From this solution | obtained a Regular expression that | used in my
implementation: (""\s+|\\s+$|\\s*(\n)\s*|(\\s)\\s*", "$1$2") (See explanation at
the link.)

http://stackoverflow.com/questions/15494780/remove-all-whitespaces-from-string-but-keep-one-newline
http://stackoverflow.com/questions/195010/how-can-i-split-multiple-joined-words
http://www.cs.duke.edu/courses/fall01/cps130/lectures/lect21.pdf
http://stackoverflow.com/questions/3466972/how-to-split-a-string-into-words-ex-stringintowords-string-into-words

However, this could only be used after standardizing space characters and
new lines, because the escape sequence “\s” doesn’t include all whitespace
characters.

Combined lines

StackOverflow solution:
How to filter word permutations to only find semantically correct ngrams?
(Python 3, NLTK)
This discusses systematically generating semantically correct phrases using
n-grams, and it also lists resources for n-grams.
Google N-grams and Google N-Gram Downloader (hard to use in a
downloaded form because of it's size)
Microsoft Web Language API
www.ngrams.info
www.wordfrequency.info
Because of the limitations of the current language models provided by the
Church (it includes many incorrect words), these or other similar language
model resources may be worth looking into.

Split lines

Mixed words

Misspelled words/missing letters

SoftCorporation has an open source spell checker in Java:
http://www.softcorporation.com/products/spellcheck/

They also provide dictionaries in 9 languages:
http://www.softcorporation.com/products/spellcheck/dictionaries/

Spell checking is a common problem that can be solved by using edit distance and
Soundex (phoneme representations) and by ranking suggestions by word
frequencies.

Incorrect casing
Oracle has a proper case processor that ensure that the first word of each sentence
starts uppercase:
http://www.oracle.com/webfolder/technetwork/data-quality/edghelp/Content/proc
essor_library/transformation/proper_case.htm

Since much of text isn’t properly separated into sentences, and much of the
casing is needed for words not at the beginning of sentences or lines, this solution
isn't sufficient.

http://www.wordfrequency.info/
https://pypi.python.org/pypi/google-ngram-downloader/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://www.oracle.com/webfolder/technetwork/data-quality/edqhelp/Content/processor_library/transformation/proper_case.htm
http://www.softcorporation.com/products/spellcheck/dictionaries/
http://www.ngrams.info/
http://www.softcorporation.com/products/spellcheck/
http://stackoverflow.com/questions/25678941/how-to-filter-word-permutations-to-only-find-semantically-correct-ngrams-pytho
http://www.oracle.com/webfolder/technetwork/data-quality/edqhelp/Content/processor_library/transformation/proper_case.htm
http://stackoverflow.com/questions/25678941/how-to-filter-word-permutations-to-only-find-semantically-correct-ngrams-pytho
https://www.microsoft.com/cognitive-services/en-us/web-language-model-api

StackOverflow solution:
Convert String into Title Case
This discusses how to convert a string of text to title case. However, our
main difficulty is determining when words should be capitalized and when
not, or which letters in the word (in the case of names) should be capitalized.

Split words

Unwanted characters

StackOverflow solutions:
Regular expression to remove HTML tags
From this we use the following regular expression to remove HTML and XML
code: <[*>]*>

Remove Email address from java string
From this we use the following regular expression to remove emails:

(*.@\s]+)(\.[*@\\s]+)"@([*.@\\s]+\\.)+([*.@\\s]+)

Removing the url from text using java

From this we use the following regular expression to remove URLs:
((https?|ftp|gopher|telnet|file|Unsure|http):((//)|(\\\))+[\W\d:#@%/;$()~_?\\+-=
WL &]%)

There are common solutions for removing HTML, XML, emails, and urls. There are
also character classes in Unicode, and we can more safely remove any characters
that aren’t in specific character classes, such as the \p{L} character class for letters
in any language.

4 Methods

4.1 Introduction

This section briefly describes the overall architecture of the code and additional
details concerning how each of the solutions were implemented.

4.2 Methods
Splitting Words

http://stackoverflow.com/questions/12366496/removing-the-url-from-text-using-java
http://stackoverflow.com/questions/1982127/remove-emaill-address-from-java-string
http://stackoverflow.com/questions/3790681/regular-expression-to-remove-html-tags
http://stackoverflow.com/questions/34949170/convert-string-into-title-case
http://www.regular-expressions.info/unicode.html

An A* approach is used, as this allows simple flexibility in the ordering of possible
splits while also being efficient as a dynamic programming approach. The
implementation goes from the beginning of the string to the end and orders the
possibilities by the number of words in the splitting option, and where this is the
same, the solutions are ordered descending by likelihoods from the language
model. The “currentindex” addition to the score is added for initial efficiency in
ordering solutions. Casing is ignored (the likelihood from the most likely casing in
the language model is used). Words are only split if the splitting option includes all
letters of the original combined word.

score = currentindex - 100*numWords + 10*ImScore;

currentindex: length of the proposed solution

numWords: number of words in the proposed solution

ImScore: average likelihood (from the language model) of each word in the
proposed solution

Examples:
Combined word: toshow

Proposed solutions tos how to show

currentindex 6 6
numWords 2 2
ImScore -9.4758052 -5.9160817
score -288.758052 -253.160817
Chosen solution: to show
Combined word: taxwitholding

Proposed solution tax withholding to show

currentindex 6 6
numWords 2 2
ImScore -9.4758052 -5.9160817
score -288.758052 -253.160817

Chosen solution: tax withholding

A more detailed list of splitting examples, with all possible solutions at the time of
returning the solution (ordered by “Calculated score”) and the chosen solution, is
found at this link: Splitting Examples

Empty lines and space
| standardized space characters into a single space from Unicode’s whitespace
characters using this list:

https://github.com/JoshuaMathias/text-correction/blob/master/splitting_examples.txt

https://www.cs.tut.fi/~jkorpela/chars/spaces.html

Regular expression for all space characters:
\t\WA\x0B\u0020\u00A0\u1680\u180E\u2000\u2001\u2002\u2003\u2004\u2005\u20
06\u2007\u2008\u2009\u200A\u200B\u202F\u205F\u3000\uFEFF]

Example:
Thisfiffexample

Correct:
This_ example

And the following list of characters for new lines:
http://unicode.org/standard/reports/tr13/tr13-5.html
Regular expression for all new line characters:
[WuOOOA\\UO00D\u0085\u000B\u000C\U2028\u2029]

Example:
This

]
example

Correct:
This

example

(Ignore the periods. It isn’t possible to see, but the new line was standardized.)
After standardizing whitespace, all whitespace between words and at the beginning
and end of lines and files were replaced with a single space or new line with the

following function call: replaceAll("M\s+|\\s+$|\\s*(\n)\\s*|(\\s)\\s*", "$1$2");
(See this link for an explanation)

Example:
This

example
Correct:

This
example

https://www.cs.tut.fi/~jkorpela/chars/spaces.html
http://unicode.org/standard/reports/tr13/tr13-5.html
http://stackoverflow.com/questions/15494780/remove-all-whitespaces-from-string-but-keep-one-newline

Unwanted characters

| used unicode classes as described at
http://www.regular-expressions.info/unicode.html. \{L} includes letters from all
supported languages, which are the characters that we most want to keep. | made
counts of symbols in all files to determine which characters are most common,
which means they may be useful to keep for machine learning training.

The following regular expressions were used to remove unwanted code or
formatting:

HTML and XML
<[*>]"\n+[*>]*> (any number of lines)

Examples:

<1 18#26;>

Email addresses:

([*.@\s]+)(\.[*.@\s]+)*@([*.@\s]+\\.)+ ([*. @\\s]+)

Examples:
cor-intellectualproperty@LDSchurch.org
orderseu@Idschurch.orgMagasin

Note that it includes all characters until a space is found.

C

RLs:
(https?|ftp|gopher|telnet|file|Unsure|http):((//)| (\W))+[\wW\d:#@ %/;$()~_ 2\ +-=\\\\. &]*

(
)

Examples:
http://www.youtube.com/mormontabchoir.
http://LDS.org/study/

Repeated Off:
Text extracted from PDF files often contain the word Off for each checkbox (note

that this only removes the “Off’ when there is more than one in succession):
Off(Off)+

Examples:
OffOffOffOffOff
OffOff

http://www.regular-expressions.info/unicode.html

Fill in the blanks:
_O)*

Examples:

Incorrect Casing

The proposed solution to fix incorrect casing is to change words in all uppercase to
the most likely casing from the language model (which could be upper case) and
this could be done with more confidence for those words that only are found as
upper case (like the abbreviation USPS).

One area of concern is handling names that have a capital letter in the middle of the
name, as well as languages that have casing in the middle of words (such as
Swahili). With this concern in mind, and to avoid changing words that already have
correct casing, words must comply with the following condition to be changed:
1. The word is in the language model and has an uppercase letter in the middle
of the word. Examples: boOk, MCConkie

A possible second option could be considered for words that don’t appear in the
language model:
2. The word has an uppercase letter in the middle of the word, and the first
letter of the word is not uppercase (even if the word is not in the language
model). Example: boOk

However, the second condition may not work for all languages, and to be safe it
may be best to not change the casing of unknown words.

Because of the variable nature of the text, changing the first letter of the word to
uppercase at the beginning of each sentence may do more harm than good,
because it is hard to define where a new sentence starts. However, this is a
possibility.

5 Results

5.1 Introduction

This section lists the results for each of the implemented solutions, with
commentary.

5.2 Combined Words

The following table shows the results of our implementation of splitting combined words (The
results can also be found here).
Correcting Combined Words

Method
of
splitting

1-grams 1-grams 1-grams 1-grams 1-grams

Clean by Clean by Ordered by Ordered by Ordered by
Manual Likelihood Likelihood - Likelihood Likelihoods Likelihoods -
correction -5.0 All -5.0 -6.5 All

Errors
corrected 121 102 73 103 101 86

Errors split
incorrectly 0 3 16 0 1 1

Correct
words split 0 51 2 40 12 0

Errors
remaining 0 19 48 18 20 35

Percentag
e
Corrected 1 84.30 60.33 85.12 83.47 71.07

Percentag

e

Corrected

Adjusted

for Errors 1 42.15 58.68 52.07 73.55 71.07

Table 1. The effectiveness of different methods of correcting combined words,

Errors corrected: The number of combined words correctly separated by spaces.
Example: CowderyDavid -> Cowdery David

https://docs.google.com/spreadsheets/d/1LJSTFB8lqSs1R5TnxQFpvqrTqUHh8yHzUQ-safBTH1g/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1LJSTFB8lqSs1R5TnxQFpvqrTqUHh8yHzUQ-safBTH1g/edit?usp=sharing

Errors split incorrectly: The number of combined words that were split by spaces, but
incorrectly. Example: andThummim -> an dT hu mm im

Correct words split: The number of correct words that were split when they shouldn’t have been.
Example: clippings -> clip pi ngs

Errors remaining: The number of combined words that weren’t separated correctly, calculated as
the number of errors corrected manually subtracted by the errors corrected for the splitting method.
Example: CowderyDavid -> CowderyDavid

Percentage corrected: Errors corrected / the total number of combined words to be corrected
(121)

Percentage Corrected Adjusted for Errors: (Errors corrected - correct words split) / the total
number of combined words to be corrected (121)

Descriptions in the second row of the table:

Clean: This means using a clean dictionary taken from the 1-grams of the language model
provided by the Church, without ordering by language model likelihoods (the first splitting
option is chosen with a preference for splitting into fewer words. Example: "and Thummim”
(2 words) would be chosen over “an dT hu mm im” (5 words)).

Ordered by likelihood: This means ordering the splitting options by the sum of the
language model likelihoods for each word. The language model score is weighted an order
of magnitude more than the preference for splitting into less words. If the split with the best
language model score and secondly the lowest number of words is considered to be
optimal, the algorithm functions as an A* search, with a priority queue ranked as explained,
as well as ranking by the number of characters currently included from the combined word,
to improve efficiency.

-5.0, -6.5, All: This number represents the cutoff used, where -5.0 means that only words
with a likelihood greater than -5.0 in the language model were included in the dictionary for
splitting words, and “All” means that all words from the language model were included (See
the next paragraph for more information).

See the following file for examples of splitting combined words and their scores:
https://github.com/JoshuaMathias/text-correction/blob/master/splitting_examples.txt

See section 4.2 for an explanation on how the scores are calculated.

https://github.com/JoshuaMathias/text-correction/blob/master/splitting_examples.txt

Percentage Corrected and Percentage Corrected

Adjusted for Errors
1 Il Fercentage
Corrected
B Fercentage
0.75 Corrected
Adjusted
far Errors
0.5
0.25

1-grams 1-grams 1-grams 1-grams 1-grams
Clean by Clean by Ordered by Ordered by Ordered by
Likelihood Likelihood - Likelihood Likelihoods Likelihoods
-5.0 All -53.0 -5.5 - All

The results reflect some difficulties with the language model, as many combined words are
included in the language model. A cutoff was used to not include words with a likelihood below a
certain number, with the lowest in this case being -6.5227585, where -6.5227585 indicates that the
word was only seen once. The best result in terms of “Percentage Corrected Adjusted for Errors”
was “1-grams Ordered by Likelihoods -6.5, ” which doesn’t include these one-time-only words.
Including less words generally improves the number of errors corrected, because, otherwise, words
that should be corrected are considered correct already. However, including more words is only
effective by ranking with n-gram likelihoods, as this helps to distinguish good words from
improbable or incorrect words.

5.3 Empty Lines and Space

The following regular expression includes the different Unicode new line and whitespace
characters:
[WuOOOA\\UO00D\u0085\u000B\U000C\u2028\u2029\\s\\x0B\u0020\uO0AO\U1680\u180E\u2000\u20
01\u2002\u2003\u2004\u2005\u2006\u2007\u2008\u2009\u200A\u200B\u202F\u205F\u3000\uFE
FF]

Using this regular expression, in all 33285 documents the following whitespace characters were
found (including new lines):

Whitespace Characters Counts

300000000 B Count

225000000

1:30000000

Count

T3000000

0
Nl & 2 o gl oo
9 \@0@ & o o o o 5 oS

Character

Data (with the actual whitespace character in parentheses):
\u0020 (): 245446697 - (normal space)
\u000a (

): 14523191 - (line feed)

\u000d (

): 14516283 - (carriage return)

\u00a0 (): 2883183 - (non-breaking space)
\u0009 (): 349421 - (tab)

\u2002 (): 84451 - (en space)

\u2009 (): 33433 - (thin space)

\u2003 (): 26990 (em space)

\u200a (): 7977 - (hair space)

\u2007 (): 2082 - (figure space)

\u2008 (): 1135 - (punctuation space)
\u2004 (): 883 - (three-per-em space)
\u2005 (): 574 - (four-per-em space)
\u2006 (): 486 - (six-per-em space)
\u202f (): 315 - (narrow no-break space)
\ufeff (): 4 - (zero width no-break space)
\u200b (): 2 - (zero width space)

There were 3440 files that have only white space. 410 of those files are completely empty.
See blank_files.txt for full results.

https://github.com/JoshuaMathias/text-correction/blob/master/blank_files.txt

There are also 520 files with 20 or less non-whitespace characters. Full results are at
small_files.txt. | noticed that many files have a single double digit number in them (possibly a page
number or some other standard numbering), which explains the number of files with only two
characters. These files with few or no characters likely don’t contain enough text to be helpful for
machine learning training purposes.

5.4 Unwanted Characters

To know which characters to remove, we count the occurrence of different characters or character
classes in all files. These counts are found at the following link, with individual files described and
linked to below, listing the regular expression used to create the counts.
https://qithub.com/JoshuaMathias/text-correction/tree/master/characters

Math characters: [\p{S}]

Punctuation characters: [\p{P}]

Special characters (not in the punctuation, letter, mark, or number classes):

["\n\p{PA\p{L \\p{MH\p{N}]

Unrecognized characters (characters that also aren't white space or math symbols; include
control characters): [Mn\t\nNA\UFEFF\\xOB\p{PM\p{SM\\p{ZMNp{L\Np{MN\p{N}]

White space characters:
MWWA\N\\X0B\u0020\u00AO0\u1680\u180E\u2000\u2001\u2002\u2003\u2004\u2005\u2006\u2
007\u2008\u2009\u200A\u200B\u202F\u205F\u3000\uFEFF] and also [\p{Z}]

Code or formatting characters (HTML, emails, URLs, etc.):

<[> |(M@\s]+) (\.[*.@\s]+H)*@([*.@\\s]+\.)+ ([*.@\\s]+)| | ((https?|ftp|gopher|telnet|file|Un
sure|http):((//)|(\\W))+[\WA\\d:#@%/;$()~_?\\+-=\\\\.&]*)| | Off(Off)+||_(_)+

Np{NNp{SHp{P}]+: 50877452 (tokens containing no letters)

<[*>]*>: 60010 (HTML, XML)

(*.@\s]+)(\.[*@\s]*)*@([*.@\s]+\.)+ ([*.@\s]+): 12337 (emails)

_()+: 6188 (fill in the blank underscores)
((https?|ftp|gopher|telnet|file|Unsure|http):((//)|(\))+[\W\d:#@ %/;$()~_?2\+-=\\.&]*): 2307
Off(Off)+: 172 (repeated Offs)

https://github.com/JoshuaMathias/text-correction/blob/master/characters/special_character_list.txt
https://github.com/JoshuaMathias/text-correction/blob/master/small_files.txt
https://github.com/JoshuaMathias/text-correction/blob/master/characters/white_space_chars.txt
https://github.com/JoshuaMathias/text-correction/blob/master/characters/punctuation_chars.txt
https://github.com/JoshuaMathias/text-correction/tree/master/characters
https://github.com/JoshuaMathias/text-correction/blob/master/characters/math_chars.txt
https://github.com/JoshuaMathias/text-correction/blob/master/characters/code_chars.txt
https://github.com/JoshuaMathias/text-correction/blob/master/characters/unrecognized_chars.txt

Unrecognized Character Counts
1200

B Count
00
=
= 600
5]
300
1L ITTTTT—
& @A G i} b T & Do L A
il o o o o .} \ o i ﬁﬁ H,
S S e Lo o T LAl Sl
Character

Note that the 8 most common “unrecognized” characters (007f, 008a, 009c, etc.) are control
characters. “Unrecognized” here means characters that aren’t a normal part of a language’s writing
system (exactly which characters fit that description is what is being studied here).

Punctuation Character Counts

20000000 B count

15000000

Count

10000000

3000000

3 vy
U Q,‘E&E'“}ﬁg'?:l’ Q "'b{:' b Q,"\"‘ Sy Qrb‘b-‘l'

0

\}Qﬁri- qj}" .;;{L'E‘ chﬂ

UQ 'L'O' .,\,au‘u
oS

Character

Some punctuation symbols are very common, while the great majority appear infrequently.

Math Character Count
120000 B count
o000
3 60000
[
30000
|:| IIIIIIIIIII.III----
ﬁkm u:ga JW @ Q&

Q.'-} e @ PR Ay @ 'x':-" Ny
S Q'ﬁ @Bﬂ o S T-‘:' f:‘ u:-rﬁ:’ “L'ﬁ' ’Ef"*ﬁ

Character

Note that the most common math character is fffd (@), where unrecognized characters are grouped
together. It looks like most math characters and many punctuation characters aren't worth keeping
in a language model sense, and some dashes, quotation marks, and other punctuation can be
grouped together. | imagine characters like "1", "§" being there for a reason though, so depending
on the use case it could be good to keep less common punctuation symbols.

In summary, | suggest combining spacing, quotation marks, apostrophes, and dashes, using the
\p{L} letter category, keeping a few math category characters like © and $, perhaps keeping most
(or all) punctuation, and removing unrecognized characters and uncommon symbols.

For removing HTML and XML, | noticed that the regular expression <[*>]*> will sometimes include
a very large portion of a file, until it finds the closing bracket. To evaluate this, | printed (without
printing repetitions) and counted the number of occurrences for the following regular expressions
(click the link to see examples):

Brackets with one or more new lines in between: <[*>]*\n+[*>]*> - 50 occurrences
Brackets with one line in between: <[*>\n]*\n[*>\n]*> - 4 occurrences

Strings found:

<Gesangbuch, Nr.

::>

<, 96,068#1; 128:Q2.20

https://github.com/JoshuaMathias/text-correction/blob/master/characters/html_one_line.txt
https://github.com/JoshuaMathias/text-correction/blob/master/characters/html_with_lines.txt

<2./0,0/ <2 D/767-38,/8#1; 96,06 A/<@/40>

Brackets with no lines in between: <[*>\n]*> - 60007 occurrences

Most or all of the occurrences found with more than one line shouldn’t be removed (they contain
non-formatting text), and the strings found with just one line between brackets aren’t important to
remove if we also remove any words or tokens that contain only numbers and punctuation or other
symbols.

To determine if it's safe to remove tokens with no letters, the following file was generated with a
large number of examples of tokens found using the proposed regular expression
Dp{NAp{SHp{P}]+ :

Non-words Examples

Since 50877452 of these tokens were found (see counts at the beginning of this section), removing
these may make a significant difference, and the examples appear to be correct, unless it is
desirable to maintain years or scripture references in the text. It is also possible to maintain only (or
almost only) years and scripture references while removing all others that fit the regular expression
above.

5.5 Incorrect Casing

In order to know what type of casing should be changed and how, lists were created of examples in
the texts of different casings. The following lists were created:

Word Case Likelihoods
Examples of casing of words and their likelihoods (the number to the left of the word is the
language model likelihood and the number to the right is the backoff-weight):

-2.1273189 the -0.80314577

-2.716161 The -0.38974512

-4.223266 THE -0.2248665

-6.5227585 THe -0.11694829

-2.283247 of -0.67790955
-4.08699 OF -0.3125919

-4.089751 Of -0.35994324
-6.5227585 oF -0.11694829

-2.4493287 a -0.72595936
-3.1952667 A -0.28206104

-3.0811715 Church-0.5509522

https://github.com/JoshuaMathias/text-correction/blob/master/case/word_case_likelihoods.txt
https://github.com/JoshuaMathias/text-correction/blob/master/characters/non-words.txt
https://github.com/JoshuaMathias/text-correction/blob/master/characters/html_without_lines.txt

-3.949039 church -0.43682495
-4.9466105 CHURCH -0.2573554

-6.5227585 CHurch -0.11694829
-4.0774627 house -0.48284513
-4.5707574 House -0.35330078
-5.6514564 HOUSE -0.17922539
-4.865117 Apple -0.24062188
-5.2516074 apple -0.14125426

-6.5227585 APPLE-0.11694829

-4.8906193 laugh -0.38095817
-6.1705723 Laugh -0.2175827
-6.1705723 LAUGH -0.34355363

-4.62422 USA -0.5954068
-6.315143 usa -0.24685998

-6.1705723 USPS -0.11694829

-4.483686 Ids -0.40179306

-3.5999858 LDS -0.4805163

The language model seems to do a decent job of showing abbreviations as most likely all cased,
and words that aren't names as all lower case (except with Apple, which is also a company).

Words with the first letter uppercase
Regular expression: (*|\s)\p{Lu}+["\s$]*
Most of these appear to be names or proper nouns.

Words with the first and middle letters uppercase
Regular expression: (M\s)\p{LI}+["\s$]*\p{Lu}["\s$]*
Most of these are all uppercase, names, or combined words.

Words with the first letter lowercase and at least one uppercase in the middle
Regular expression: (M\s)\p{LI}+["\s$]*\p{Lu}["\s$]*

https://github.com/JoshuaMathias/text-correction/blob/master/case/middle_upper_case.txt
https://github.com/JoshuaMathias/text-correction/blob/master/case/first_upper_case.txt
https://github.com/JoshuaMathias/text-correction/blob/master/case/first_middle_upper_case.txt

Many of these are from languages other than English, but for those words that are English, some
are combined, but many are words with incorrect casing.

Consequently, the third regular expression is likely to be more effective at finding words with
incorrect casing in English. It may also be effective to find words that have more mixed casing
within the word, even if it starts with an uppercase letter.

Handling words that are all upper case:

Words that are only uppercase

There are some abbreviations like USA, USPS, ISSN, though most of the caps seem to be names
of organizations, titles, and information like "ILLUSTRATION BY VAL CHADWICK BAGLEY."
Abbreviations we would expect to find in the language model, though a list of abbreviations could
be effective for some languages.

All Language Model Caps

Language Model Caps -1.0 Cutoff

Language Model Caps -3.0 Cutoff

Language Model Caps -6.0 Cutoff

To see how effective the language model will be in correcting casing for words that are all caps, |
searched the English language model for capitalized words, and listed the upper case words from
the language model (of more than one consecutive letter) and did the same thing with likelihood
cutoffs of -6.0, -3.0, and -1.0, to see if that would narrow things down more to abbreviations or
commonly uppercase words. It did to some degree, though most are not abbreviations.

6 Conclusions

6.1 Introduction

Here we draw conclusions from the experiments to determine how to continue in
the future to correct text from PDF documents.

6.2 Conclusion

Most of the work in correcting the text of PDF documents is evaluating the texts and
determining what the most effective methods are for correction while not creating
more errors. Also, adaptation of methods is required for different languages
(especially with casing). However, with a good (comprehensive and accurate)

https://github.com/JoshuaMathias/text-correction/blob/master/case/all_caps_lm_3-0.txt
https://github.com/JoshuaMathias/text-correction/blob/master/case/all_caps_lm_6-0.txt
https://github.com/JoshuaMathias/text-correction/blob/master/case/all_caps.txt
https://github.com/JoshuaMathias/text-correction/blob/master/case/all_caps_lm_1-0.txt
https://github.com/JoshuaMathias/text-correction/blob/master/case/all_caps_lm.txt

language model that can be trusted, many corrections, such as splitting combined
words and correcting casing, can be done with high confidence.

6.3 Future Work

Combined words

Bigrams (and to a lesser extent trigrams) can be expected to significantly improve
results. Also, a separate dictionary and/or a better language model could be used
that doesn’t contain combined words, in which case using a cutoff value may not be
necessary.

Combined lines

A language model that can be used to It will likely help to perform this before
removing extra whitespace, as extra whitespace is often an indicator of a combined
line.

Split lines

Unrecognized words at the end of a line can be concatenated to the beginning of the
next line, and also the language model can be used to determine if a line has an
unlikely sentence ending and a very likely combination with the beginning of an
adjacent line (or a line with 1-5 lines away).

Mixed words

Where words are not likely to be together according to the language model, the
language model can be used to determine if there are other orderings on the same
line that would be more likely in the language.

Misspelled words/missing letters

| started to implement a spell checker that uses the given language model, and this
spell checker uses normal edit distance as well as soundex, but there was not
enough time to try this and show results. The first step is seeing what kinds of
corrections the spell checker would make, in order to identify and count how many
words need to be corrected.

Incorrect casing

It may be effective to find words that have mixed casing (multiple case changes)
within the word, even if it starts with an uppercase letter. Care must be taken to not
change the casing of correct words.

Unwanted characters
It may help to use different sets of punctuation, symbols, and even letters for each
language, based on how much each character is used in each language.

More non-word tokens (separated by spaces) containing letters, such as
identification numbers, could be removed by a more complicated regular
expression, which could include only words that have more than three characters
and/or have a disproportionate number of non-letter characters to letter characters.
This would have to be tested.

7 Appendix

This section contains files and links for reference.

Project code on GitHub

Word lists:
http://dreamsteep.com/downloads/word-games-and-wordsmith-utilities/120-the-english-o
pen-word-list-eowl.html

Manually corrected files:

Test files and errors to be corrected.

1 2 3 4 5 6 7 8 9 10
Combined words 20) |0 2 3 11 28 32 25 3 7
Empty words 25 4 4 1 1 0 1 26 28 |84
Combined lines 64 0 0 0 0 0 0 0 1 0
Split lines 19 0 1 1 1 0 0 7 2 0
Mixed words 13 0 0 0 0 0 0 6 3 0
Misspelled words 0 0 0 0 0 0 0 0 0 0
Incorrect Casing 27 0 2 10 0 0 0 0 0 0
Unwanted Characters 0 0 0 0 0 0 0 18 25 |0

Table 2. Manually found errors in test files.

The top row is the number associated with each file (test_1.txt, etc.).

The first column refers to the name of the error (see section 2. Problems).

Note: Evaluation was done manually, including for “Unwanted Characters.” Due to time and the
difficulty of manual evaluation, this data was only used to evaluate correcting combined words (See
Table 1 at section 5.2).

https://github.com/JoshuaMathias/text-correction
http://dreamsteep.com/downloads/word-games-and-wordsmith-utilities/120-the-english-open-word-list-eowl.html
http://dreamsteep.com/downloads/word-games-and-wordsmith-utilities/120-the-english-open-word-list-eowl.html

The complete list of words that were split (and how they were split) for each test file are found at
the following link: https://github.com/JoshuaMathias/text-correction/tree/master/split_output

The test files are found at the following link:
https://github.com/JoshuaMathias/text-correction/tree/master/test_files

The original test files are named test_1.txt, test_2.txt, etc.

The test files that were manually corrected for combined words have “_split” at the end of the
name.

The test files that were manually corrected for all errors (“golden standard” files) have the
“_corrected” in the file name.

The test files that were corrected and then reviewed by Ryan Lee have “_review” in the file name.

https://github.com/JoshuaMathias/text-correction/tree/master/split_output
https://github.com/JoshuaMathias/text-correction/tree/master/test_files
https://www.researchgate.net/publication/316844094

